Презентация по информатике — история развития эвм. Презентация «история эвм» Презентация на тему эвм — mashamult.ru

новости

Как начинался счёт. Зарождение счёта. Изобретение счёт. Расчеты при помощи мелких камней. Древнегреческий абак. Римляне усовершенствовали конструкцию. В Китае счеты назывались «суан-пан». У китайцев в основе счета лежала не десятка, а пятерка. Цельные кукурузные початки. Русские счеты. Изобретение механического калькулятора. История происхождения счетных машин. Суммирующая машина. Паскаль. Первая счетная машина. Рукописи Леонардо да Винчи. Счетные машины. Изобретение ККМ. Кассовый аппарат. Служащие. Идея создания аппарата. Аппарат фиксировал каждую торговую операцию. Детище Джеймса.
— Счётные машины.ppt

Изобретение компьютера

Слайдов: 25 Слов: 1177 Звуков: 0 Эффектов: 0

История компьютеров. Краткая характеристика понятия компьютер. Первая «считающая машина». Вычислитель. Вычислитель сэра Сэмюэля Морланда. Вильгельм Годфрид фон Лейбниц. Джованни Полени. Чарльз Бэббидж. Дорр Фельт. Корпорация. Алан Тюринг. Конрад Цузе. Говард Эйкен. Первый электронный компьютер. Джон Таки. Коммерческие компьютеры. Новый процессор. Массовые компьютеры. Первый компьютер. Персональный компьютер. Первое поколение ЭВМ. Второе поколение ЭВМ. Третье поколение ЭВМ. Четвертое поколение ЭВМ. Пятое поколение ЭВМ.
— Изобретение компьютера.pptx

Этапы развития компьютера

Слайдов: 51 Слов: 1199 Звуков: 0 Эффектов: 24

История развития информационных технологий. От ручного счета до ЭВМ. Ручной счет. Вычисления в доэлектронную эпоху. Счёт на пальцах. Древние средства счёта. Абак и его потомки. Соробан. Первые механические машины. Первый проект счётной машины. Логарифмическая линейка. Круговая логарифмическая линейка. Машина Шиккарда. Счетная машина Паскаля. Арифмометр Лейбница. Жаккардов ткацкий станок. Перфокарты. Механический калькулятор. Чарльз Бэббидж. Разностная машина Чарльза Бэббиджа. Аналитическая машина Чарльза Бэббиджа. Ада Лавлейс. Механическая технология. Аппарат Чебышева.
— Этапы развития компьютера.pptx

История развития компьютерной техники

Слайдов: 22 Слов: 1594 Звуков: 0 Эффектов: 0

История программного обеспечения

Слайдов: 44 Слов: 2309 Звуков: 0 Эффектов: 0

Программное обеспечение компьютера. Системное программное обеспечение. История операционных систем. Операционная система. Классические (несетевые) ОС. Операционные системы привязывают к процессорам. Взаимодействие программного и технического обеспечения. Монолитное ядро. Слоеная система Technishe Hogeschool Eindhoven (THE). ОС- виртуальная машина. Многоядерная структура ОС. Программирование. Ада Лавлейс (1815-1852). История алгоритмических языков. Джон Бэкус и Питер Наур. Язык Кобол. Концепция структурного программирования. Язык программирования Паскаль (Pascal) создан швейцарцем Н.Виртом.
— История программного обеспечения.ppt

История создания ЭВМ

Слайдов: 124 Слов: 5251 Звуков: 0 Эффектов: 0

Электронные вычислительные машины. Работы Атанасова. Первая ЭВМ ENIAC. ЭВМ ENIAC. Руководители проекта ENIAC. Проект фон Неймана и его вклад в архитектуру ЭВМ. Фрагменты статьи фон Неймана с соавторами (русский перевод). Основные черты классической фон-неймановской архитектуры ЭВМ. Реализация проекта фон Неймана в США. Сверхсекретная криптоаналитическая лаборатория. Специализированная электронная вычислительная машина. Американская ЭВМ с хранимой программой EDVAC. Первые поколения ЭВМ. Формирование индустрии ЭВМ. ЭВМ Whirlwind – «Вихрь». В 1953 г. к производству ЭВМ общего назначения подключилась фирма IBM.
— История создания ЭВМ.ppt

История развития ЭВМ

Слайдов: 12 Слов: 413 Звуков: 0 Эффектов: 46

История развития вычислительных машин. Домеханический этап развития вычислительной техники. Простейшие счетные устройства. Набор деревянных брусков. Механический этап развития. Немецкий философ. Счетные устройства 19 века. Жозеф Марри Жаккар. Аналитическая машина Чарльза Беббиджа. Аналоговые вычислительные машины. Электронно-вычислительные машины. Поколения компьютеров.
— История развития ЭВМ.ppsx

История создания и развития ЭВМ

Слайдов: 18 Слов: 916 Звуков: 0 Эффектов: 48

История создания ЭВМ. Оглавление. Доэлектронный период. Паскалина. Машина Лейбница. Пафнутий Львович Чебышев сконструировал счетную машину. Аналитическая машина Беббиджа. Табулятор. Первое поколение ЭВМ. Первая в мире ЭВМ – ENIAC. Второе поколение ЭВМ. В 60 – х годах транзисторы стали элементной базой для ЭВМ. Третье поколение. В 1958 году Джон Килби впервые создал опытную интегральную схему. Четвертое поколение. Американская фирма intel объявила о создании микропроцессора. Пятое поколение. Спасибо за внимание.
— История создания и развития ЭВМ.ppt

Этапы развития ЭВМ

Слайдов: 22 Слов: 1368 Звуков: 0 Эффектов: 120

Вычислительная техника и человек. Он быстрее человека. Маршрут. Период. Механический период. Механический период. Электронно-вычислительный этап. Фашистский режим. Машина Colossus. Говард Эйкен. Первая электронная вычислительная машина. Создана ЭВМ. Годы применения. Этап. Электронно-вычислительный этап. Электронно-вычислительный этап. Электронно-вычислительный этап. Информатика в лицах. Прогресс наук и машин. Информационные источники. Http://rufact.org/media/attachments/wakawaka_wikipage/380/Однер%20Вильгодт%20Теофил.jpg – Т.В. Слайд 18.
— Этапы развития ЭВМ.pptx

История вычислительной техники

Слайдов: 17 Слов: 2502 Звуков: 0 Эффектов: 2

История вычислительной техники. Прошлое. Начало счета. Вид инструментального счета. Римский абак. Вычислительные машины. Блез Паскаль. Цифровые вычислительные устройства. Конрад Цузе. Говард Айкен. Первое поколение ЭВМ. Вклад русских ученых. Сотрудники лаборатории. Эра персональных компьютеров. Поколения ЭВМ. Характеристика поколений ЭВМ. Путешествие.
— История вычислительной техники.ppt

История средств вычислительной техники

Слайдов: 41 Слов: 3146 Звуков: 0 Эффектов: 0

История развития вычислительной техники. План. Домеханический этап. Ручной этап. Абак. Китайские счеты. Счеты. Появление приборов. Открытие логарифмов. Механический этап. Блез Паскаль. Немецкий ученый Лейбниц. Счетная машина. Склад. Аналитическая машина. Электромеханический этап. Алан Тьюринг. Характеристики. Машины строились на электровакуумных лампах. ЭВМ. ЭНИАК. Академик Сергей Алексеевич Лебедев. Основоположник компьютерной техники в СССР. I поколение ЭВМ. Быстродействие. Строилась на транзисторах. Полупроводниковые машины на транзисторах. Большая электронная счетная машина.
— История средств вычислительной техники.ppt

История развития средств вычислительной техники

Слайдов: 84 Слов: 6782 Звуков: 0 Эффектов: 108

История. Времена Ромула. Так считали во времена Ромула и даже раньше. Рука. Простейшим и первым искусственным счетным прибором является бирка. Счетные бирки. Счет при помощи веревок. Счетные узелки у разных народов считались неприкосновенными. Рост и расширение торговли потребовали новые средства для вычислений. Маленький эпизод из истории русских счет. Счет на таблицах. Направление развития счетных инструментов. Выполним умножение. Мы получили табличку. Таблицу можно перенести на дощечки. Логарифмические таблицы. Механические счетные устройства. Эскиз механического тринадцатиразрядного суммирующего устройства.
— История развития средств вычислительной техники.ppt

Этапы развития вычислительной техники

Слайдов: 27 Слов: 375 Звуков: 0 Эффектов: 6

Виртуальный музей вычислительной техники. Ручной этап развития вычислительной техники. 50 тысяч лет до нашей эры. Древний Египет. Россия. Механический этап развития вычислительной техники. Франция XVII век. Первое программируемое устройство. Англия XIX век. Первый программист — Ада Лавлейс. Электромеханический этап развития вычислительной техники. Герман Холлерит создал табулятор для статистических подсчётов. А. Тьюринг и Пост доказали, что машина может решить любую задачу. Электронный этап развития вычислительной техники. Этапы развития вычислительной техники.
— Этапы развития вычислительной техники.ppt

Тенденции развития вычислительной техники

Слайдов: 30 Слов: 1325 Звуков: 0 Эффектов: 120

История развития вычислительной техники. Компьютер. Древние люди. Первые средства счета. Абак. Счеты. Первые проекты счетных машин. Машина Шиккарда. Паскалина. Логарифмическая линейка. Арифмометр Лейбница. Усовершенствованный арифмометр. Механический калькулятор. Аналитическая машина Бэббиджа. Первый программист. Энигма. Время Второй мировой войны. Конрад Цузе. Марк-I. Хранение данных на бумажной ленте. Эниак. Первые компьютеры. Малая электронно-счетная машина. Большая электронно-счетная машина. Поколения компьютеров. Первое поколение ЭВМ. Операционные системы.
— Тенденции развития вычислительной техники.pptx

Основные этапы развития вычислительной техники

Слайдов: 25 Слов: 1240 Звуков: 0 Эффектов: 121

История развития вычислительной техники. Характеристика поколения ЭВМ. Первые вычислительные машины в ХХ веке. Цифровые ЭВМ. Много аналоговых вычислительных машин. Разработки более эффективных счетных машин. Колосс. Эниак. Первые компьютеры. Компьютеры С.А. Лебедева. Большая электронно-счетная машина. Ламповая вычислительная машина. Поколения компьютеров. Первое поколение ЭВМ. Быстродействие. Магнитная лента. Операционные системы. Компьютеры на больших и сверхбольших интегральных схемах. Характеристика различных поколений ЭВМ. Суперкомпьютеры. Cray-2.
— Основные этапы развития вычислительной техники.ppt

История развития поколений вычислительной техники

Слайдов: 51 Слов: 2964 Звуков: 0 Эффектов: 0

История создания и развития вычислительной техники. История развития поколений вычислительной техники. Основные даты. Первая серийная ЭВМ. Вестоницкая кость. Инструмент. Китайские счеты. Дощаный счет. Греки и египтяне. Индийские ученые. Арабский ученый. Блез Паскаль. Механическое устройство. Леонардо да Винчи. Стержни. Чертежи. История развития поколений вычислительной техники. Автоматическое вычислительное устройство. Английский математик. Ноябрь. Первая программистка мира. Ада Августа Байрон. Первые ЭВМ. Болгарин. Первая универсальная ЭВМ. Революция в мире компьютеров.

Первая в истории попытка создания программно-управляемого вычислительного автомата принадлежала Чарльзу Бэббиджу. Ему так и не удалось построить свою «Аналитическую машину», используя техническую базу середины Х I Х столетия.

Работы по изготовлению «Аналитической машины» были прерваны смертью Ч. Бэббиджа. Полностью «Разностная машина» Ч. Бэббиджа была достроена только в наше время в 1991 г. двумя инженерами Р. Криком и Б. Холловеем в Лондонском научном музее к 200-летию со дня рождения её автора.

Перфокарты для «Аналитической машины» Конец XIX века. Герман Холлерит. Изобретение счетно-перфорационных машин. Основал фирму по выпуску машин, в настоящее время она носит название IBM.

30-е годы XX века. Предшественники ЭВМ — релейно-вычислительные машины. В основе электромеханическое реле. 1947 г. – релейная машина «Марк-2» (13000 реле). 1956 г. – РВМ-1 (Н.И. Бессонов). Невысокая скорость работы.

Первая половина XIX века. Основа для ЭВМ – электронно-вакуумные лампы. 1945 год – первая ЭВМ (США)– универсальная машина на электронных лампах. ENIAC (электронный цифровой интегратор и вычислитель). Конструкторами ENIAC были Дж. Моучли и Дж. Эккер. Основные идеи, по которым долгие годы развивалась вычислительная техника, были разработаны крупнейшим американским математиком Джоном фон Нейманом.

Электронные лампы 40-х годов

В 1946 году в журнале « Nature » вышла статья Дж. Фон Неймана, Г. Голдстайна и А. Беркса «Предварительное рассмотрение логической конструкции электронного вычислительного устройства». Изложены принципы устройства и работы ЭВМ(пр инцип хранимой в памяти программы) – архитектура Дж. Фон Неймана.

1949 г. – первая ЭВМ с архитектурой Неймана – английская машина EDSAC . 1950 г. – американская ЭВМ EDVAC . 1951 г. – МЭСМ – малая электронная счетная машина (конструктор МЭСМ Сергей Алексеевич Лебедев). 50-е годы – БЭСМ-1, БЭСМ-2, М-20 – ламповые 60-е годы – БЭСМ-3М, БЭСМ-4, М-220, М-222, БЭСМ-6 – полупроводниковые

Признаки, отличающие одно поколение от другого: элементная база; быстродействие; объём оперативной памяти; устройства ввода/вывода; программное обеспечение.

Первое поколение ЭВМ (50-е годы) — ламповые машины. Скорость счета – до 20 тыс. операций в секунду (ЭВМ М-20). Для ввода программ и данных использовались перфоленты и перфокарты. Это довольно громоздкие сооружения, содержали тысячи ламп, занимали сотни квадратных метров, потребляли электроэнергию в сотни киловатт.

1949 г. — первый полупроводниковый прибор, заменяющий электронную лампу (транзистор). В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения.

Быстродействие достигло десятков и сотен тысяч операций в секунду. Объем внутренней памяти возрос в сотни раз. Устройства внешней памяти. Стали развиваться языки программирования высокого уровня (ФОРТРАН, АЛГОЛ, КОБОЛ). Составление программы перестало зависеть от модели машины, сделалось проще, понятнее, доступнее.

Устройства внешней памяти

Вторая половина 60-х годов – третье поколение ЭВМ. Создавалось на новой элементной базе – интегральных схемах.

Элементная база машин 3-го поколения

К четвёртому поколению ЭВМ относят МикроЭВМ. Они отличаются от своих предшественников тем, что имеют малые габариты. Самой популярной разновидностью ЭВМ являются персональные компьютеры. Есть и другая линия развития ЭВМ четвёртого поколения. Это – СуперЭВМ. Машины этого класса имеют очень высокое быстродействие.

И наконец ЭВМ пятого поколения – это машины недалёкого будущего. Основным их качеством должен быть высокий интеллектуальный уровень. Машины пятого поколения – это реализованный искусственный интеллект.

    Кондратьева М.О.
    Учитель информатики и ИКТ ГОУ ЦО 1440
    г. Москва
    Уважаемые коллеги! Предлагаю вам свою разработку по теме «История ЭВМ».
    Вопреки «правилам хорошего тона» при создании презентаций, на некоторых слайдах много текста. Это связана со спецификой применения этой презентации.
    Обычно я строю урок следующим образом:
    Устное объяснение темы. Учащиеся записывают опорные сведения, оставляя в тетрадях свободные промежутки. Например, ДОМЕХАНИЧЕСКИЙ ПЕРИОД (оставляем 1 страницу), МЕХАНИЧЕСКИЙ ПЕРИОД (1 страница – записываем – Шиккард, Паскаль, Лейбниц, 2 страница — Бэббидж) и т.д.
    После «лекционной» части урока учащиеся садятся за компьютеры и, просматривая презентацию, дополняют конспект урока фактами по своему выбору, проверяют правильность написания дат, фамилий, терминов.
    Одна из основных методик преподавания, которую я выбрала – блочно-модульная. Поэтому данная презентация в более или менее усеченном виде используется в 5,7,9 классе. Данный вариант предназначен для учащихся 10 класса, знакомых с понятиями электро-механического реле, транзистора и т.п.
    Для закрепления и контроля я использую тест, созданный в приложении Excel.
    Спасибо всем, кто заинтересовался моей работой.
    Каким же все таки был первый компьютер? Кто его создал? Как он был создан, вообще как появилась сама идея создания вычислительной машины?
    История компьютера тесным образом связана с попытками облегчить и автоматизировать большие объемы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга.
    Человечество научилось пользоваться простейшими счётными приспособлениями тысячи лет назад.
    Простейший счет велся на пальцах, а когда их не хватало, использовались любые природные объекты,
    Древнейший артефакт такого рода — «кость Ишанго», найденная в Конго (возраст — около двадцати тысяч лет). Это берцовая кость бабуина, покрытая засечками.
    Вестоницкая кисть, названная так по местечку находки на юго-востоке Вестониции в Чехии. Она представляла собой волчью кость с нанесенными на ней зарубками. Ее происхождение датируется 300 тыс. лет до н.э.
    Счет на узелках
    Бирки
    Примерно пять тысяч лет назад в Вавилоне появилась счетная доска, известная ныне как абак (абакус). По полю с углублениями передвигались камушки (десятки).
    В Риме был создан первый в мире ручной абак — табличка с подвижными фишками.
    Следующий шаг сделали китайцы, создавшие в шестом-двенадцатом веках нашей эры суньпан, известный сегодня как счеты. Большая секция костяшек называлась «земля», а малая наверху — «небо».
    Юпана, калькулятор майя. Ученые долго не могли понять предназначение этой маленькой «модели крепости» до тех пор, пока Николино де Паскуале не установил, что так называемые «дикари» создали матрицу калькулятора с использованием последовательности Фибоначчи и системы исчисления с основанием 40 (а не 10, как в Старом Свете).
    В 1614 году шотландский математик Джон Непер изобрел таблицы логарифмов
    . Логарифмы очень упрощают деление и умножение. Для умножения двух чисел достаточно сложить их логарифмы.
    Таблицы логарифмов позже были как бы встроены в устройство, позволяющее значительно ускорить процесс вычисления, — логарифмическую линейку.
    Непер предложил в 1617 году не логарифмический способ перемножения чисел. Инструмент, получивший название палочки (или костяшки) Непера
    Однажды в доме случилась пропажа. Подозрение пало на слуг, но ни одного из них нельзя было обвинить наверняка. И тогда Непер объявил, что его черный петух обладает способностью открывать своему хозяину тайные мысли. Каждый слуга должен был войти в темную комнату, где находился петух, и дотронуться до него рукой. Было сказано, что петух закричит, когда вор до него дотронется. И хотя петух так и не закричал, Непер все же определил вора: он предварительно обсыпал петуха золой, и чистые пальцы одного из слуг стали доказательством его виновности.
    Логарифмические линейки использовались несколькими поколениями инженеров и других профессионалов. Инженеры программы «Аполлон» отправили человека на Луну, выполнив на логарифмических линейках все вычисления, многие из которых требовали точности в 3-4 знака.
    В 1623 г.Вильгельм Шиккард — востоковед и математик, профессор Тюбинского университета — в письмах своему другу Иогану Кеплеру описал устройство «часов для счета»
    — счетной машины с устройством установки чисел и валиками с движком и окном для считывания результата.
    «Считающие часы» Вильгельма Шиккарда. Автограф письма.
    В 1642 г. французский математик Блез Паскаль (1623-1662) сконструировал счетное устройство
    , чтобы облегчить труд своего отца — налогового инспектора. Это устройство позволяло суммировать десятичные числа.
    Примерно за 10 лет Паскаль построил около 50 и даже сумел продать около дюжины вариантов своей машины. Несмотря на вызываемый ею всеобщий восторг машина не принесла богатства своему создателю.
    Арифмометры, использующие в своем устройстве принцип зубчатого колеса просуществовали до 60-х годов 20 века.
    В 1673 г.Немецкий философ, математик, физик Готфрид Вильгельм Лейбниц(646-1716) создал «ступенчатый вычислитель»
    — счетную машину, позволяющую складывать, вычитать, умножать, делить, извлекать квадратные корни, при этом использовалась двоичная система счисления.
    Лейбниц также описал двоичную систему счисления
    , один из основных принципов устройства современных компьютеров.
    В 1822г. английский математик Чарлз Бэббидж(1792-1871) выдвинул идею создания программно-управляемой счетной машины
    , имеющей арифметическое устройство, устройство управления, ввода и печати.
    Первая спроектированная Бэббиджем машина, Разностная машина
    , работала на паровом двигателе.
    Разностная машина, сконструированная по записям Бэббиджа через сто лет после его смерти.
    Числа записываются (набираются) на дисках, расположенных по вертикали и установленных в положения от 0 до 9. Двигатель приводится в действие последовательностью перфокарт
    , содержащих инструкции (программу).
    Рабочий узел Аналитической машины
    Аналитическую машину
    Бэббиджа построили энтузиасты из Лондонского музея науки.
    Она состоит из четырех тысяч железных, бронзовых и стальных деталей и весит три тонны.
    Правда, пользоваться ею очень тяжело — при каждом вычислении приходится несколько сотен (а то и тысяч) раз крутить ручку автомата.
    В 1801 году Жозеф Мари Жаккар разработал ткацкий станок, в котором вышиваемый узор определялся перфокартами. Серия карт могла быть заменена, и смена узора не требовала изменений в механике станка.
    Это было важной вехой в истории программирования.
    Принцип формирования узора с помощью перфокарт
    Перфокарты
    Идеи Ч.Бэббиджа, заложенные в конструкции Аналитической машины.
    Одновременно с английским ученым работала леди Ада Лавлейс(1815-1852).
    Единственная научная работа леди Лавлейс относилась к «вопросам программирования для аналитической машины Беббиджа» и предвосхитила основы современного программирования для цифровых вычислительных машин с программным управлением.
    Она разработала первые программы
    для машины, заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени.
    В материалах и комментариях Лавлейс намечены такие понятия, как подпрограмма и библиотека программ, модификация команд и индексный регистр, которые стали употребляться только в 1950-х годах.
    Ада Лавлейс предложила термины «рабочая ячейка» и «цикл».
    Электромеханическое реле
    В 1884 г.Американский инженер Герман Холлерит (860-1929) взял патент «на машину для переписи населения»(статистический табулятор).
    Изобретение включало перфокарту и сортировальную машину. Перфокарта Холлерита оказалась настолько удачной, что без малейших изменений просуществовала до наших дней.
    Табулятор принимал карточки размером с долларовую бумажку. На карточках имелось 240 позиций (12 рядов по 20 позиций). При считывании информации с перфокарт 240 игл пронизывали эти карты. Там, где игла попадала в отверстие, она замыкала электрический контакт, в результате чего увеличивалось на единицу значение в соответствующем счетчике.
    Компания Холлерита в конечном счёте стала ядром IBM
    В 1941 году Конрад Цузе построил первый в мире действующий релейный двоичный компьютер Z3 с программным управлением.
    Устройство счетной машины Z-4 напоминает архитектуру современных компьютеров: память и процессор были отдельными устройствами, процессор мог обрабатывать числа с плавающей запятой, выполнять арифметические действия и извлекать квадратный корень. Программа хранилась на перфоленте и считывалась последовательно.
    Z- 4. 1942-1945 г.г.
    Описание Z-3
    Развитие ЭВМ делится на несколько периодов. Поколения ЭВМ каждого периода отличаются друг от друга элементной базой и математическим обеспечением.
    В нашей стране началом выпуска можно считать начало 50-х годов — появление «МЭСМ». «МЭСМ» была разработана под руководством Лебедева. В 1952-1953 годах на ее основе была разработана «БЭСМ-1» (Большая электронная счетная машина). А на ее основе был произведен серийный выпуск машины «БЭСМ-2».
    Американский ENIAC, который часто называют первым электронным компьютером общего назначения, публично доказал применимость электроники для масштабных вычислений.
    При 17 тыс. ламп, одновременно работающих с частотой 100 тыс. импульсов в секунду, ежесекундно возникало 1,7 млрд. ситуаций, в которых хотя бы одна из ламп перегорала
    Общий вес машины составлял 30тонн, она имела размеры: около 6 м в высоту и 26 м в длину
    Вместе с тем она обладала тысячекратным увеличением в быстродействии. По словам одного восхищенного репортера, Эниак работал «быстрее мысли».
    Представитель первого поколения ЭВМ – ENIAC:
    Программирование гигантского компьютера Эниак ENIAC осуществлялось вручную: операторы устанавливали в нужное положение около 6000 переключателей, а затем переключали кабели. На подготовку задачи, с решением которой машина справлялась за 20 с, иногда требовалось два дня.
    Происхождение сленгового слова BUG
    По легенде, учёные тестировавшие вычислительную машину Марк-1 нашли мотылька, застрявшего между контактами электромеханического реле, и Грейс Хоппер произнесла этот термин. Извлечённое насекомое было вклеено скотчем в технический дневник, с сопроводительной надписью: «First actual case of bug being found» (англ. «первый случай обнаружения жука»). Этот забавный факт положил начало использованию слова «debugging» в значении «отладка программы».
    Грейс Хоппер- американский военный деятель, контр-адмирал, программист, создала программное обеспечения для компьютера марк-1
    Ввод чисел в первые машины производился с помощью перфокарт, а программное управление последовательностью выполнения операций осуществлялось с помощью штеккеров и наборных полей.
    У них был недостаток: они выделяли большое количество тепла, что требовало постоянного охлаждения и вентиляции. Кроме того, электронные лампы были громоздкими, дорогими и потребляли большое количество энергии.
    Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений.
    Вес и размеры этих компьютерных динозавров, которые нередко требовали для себя отдельных зданий, давно стали легендой.
    Основные характеристики компьютеров первого поколения
    Элементной базой второго поколения стали полупроводники.
    Транзисторы пришли на смену не надежным электронно-вакуумным лампам. Транзисторы значительно уменьшили компьютеры в размере и стоимости. Самой удивительной способностью транзистора является то, что он один способен трудиться за 40 электронных ламп и при этом работать с большей скоростью, выделять очень мало тепла и почти не потреблять электроэнергию.
    Первый транзистор
    Знаменитая БЭСМ-6
    Урал-11
    Минск-12
    Основные характеристики компьютеров второго поколения
    Интегральные схемы стали элементной базой компьютеров третьего поколения.
    Интегральная схема — это схема изготовленная на полупроводниковом кристалле и помещенная в корпус. Иногда интегральную схему называют – микросхемой или чипом. Chip в переводе с английского – щепка. Это название он получил из-за своих крошечных размеров. Первые микросхемы появились в 1958 году. Два инженера почти одновременно изобрели их не зная друг о друге. Это Джек Килби и Роберт Нойс.
    В компьютерах третьего поколения, одна интегральная схема могла заменить до тысячи транзисторов и других базовых элементов. А каждый такой элемент мог заменять до нескольких десятков электронных ламп.
    Эльбрус-2
    Основные характеристики компьютеров третьего поколения
    Начиная с ЭВМ 3-го поколения, традиционным стала разработка серийных ЭВМ. Хотя машины одной серии сильно отличались друг от друга по возможностям и производительности, они были информационно, программно и аппаратно совместимы.
    В 1969 году зародилась первая глобальная сеть – зародыш того, что мы сейчас называем INTERNET
    Многие считают, что только с 1985 г., когда появились супербольшие интегральные схемы следует отсчитывать начало нового периода. В кристалле такой схемы может размещаться до 10 млн. элементов.
    Развитие ЭВМ 4 поколения пошло по двум направлениям:
    1 – создание суперЭВМ – комплексов многопроцессорных машин.
    2 – дальнейшее развитие микро-ЭВМ и персональных ЭВМ
    Именно в эти годы зародился термин «Персональный компьютер».
    Основные характеристики компьютеров четвертого поколения
    Годы применения
    1977 (1985)
    Элементная база
    Количество ЭВМ в мире
    Миллионы
    Быстродействие (операций в сек.)
    Более 109
    Объем оперативной памяти
    Более 16 МБ
    Характерные типы ЭВМ
    СуперЭВМ, ПК, сети
    Типичные модели
    IBM/360 SX-2
    Носитель информации
    Гибкий, жесткий, лазерный диск
    Характерное программное обеспечение
    Системы параллельного программирования

Слайд 2

Историяразвития

Абак
Одним из первых устройств (V-IV веке до н.э.), облегчающим вычисления был абак. Вычисления на нем проводились путем перемещения костей и камешков в продольных углублениях.

Слайд 3

В древней Руси применялось устройство похожее на абак и называлось оно “русский щот”. В XVII веке этот прибор уже имел вид привычных русских счетов

Слайд 4

В начале XVII века, когда математика стала играть ключевую роль в науке, молодой французский математик и физик Блез Паскаль создал первую счетную машину, названную Паскалиной, которая выполняла сложение и вычитание.

Слайд 5

В 1670-1680 годах немецкий математик Готфрид Лейбниц сконструировал счетную машину, которая выполняла все четыре арифметических действия

Слайд 6

В 1878 году русский ученый П.Чебышев сконструировал счетную машину, выполнявшую сложение и вычитание многозначных чисел

Слайд 7

Важным событием XIX века было изобретение английского математика Чарлза Беббиджа, который вошел в историю как изобретатель первой вычислительной машины – прообраза современных компьютеров. К 1822 году он построил действующую модель разностной машины, которая выполняла определенную программу, и рассчитал на ней таблицу квадратов. Он мог оперировать 18-разрядными числами

Слайд 8

Совершенствуя разностную машину, Беббидж в 1833 году построил аналитическую машину

Слайд 9

Необходимость автоматизировать вычисления при переписи населения в США подтолкнула Генриха Холлерита к созданию в 1888 году устройства, названного табулятором. В 1924 году Холлерит основал фирму IBM (International Business Machines Corporation)для серийного выпуска табуляторов.

Слайд 10

До появления первых персональных компьютеров приобретение и использование вычислительных машин обходились очень дорого. Мало кто из простых людей мог позволить себе иметь дома такое чудо техники! Компьютеры устанавливались в больших корпорациях, университетах, исследовательских центрах и государственных учреждениях.12 августа 1981 года американская компания IBM Corporation (International Business Machines) представила первую модель персонального компьютера – IBM 5150, положившую начало эпохи современных компьютеров.
Историяразвития


Посмотреть все слайды

Описание презентации по отдельным слайдам:

1
слайд

Описание слайда:

2
слайд

Описание слайда:

3
слайд

Описание слайда:

Счет на пальцах Пальцевый счет уходит корнями в глубокую древность, встречаясь в том или ином виде у всех народов и в наши дни. Известные средневековые математики рекомендовали в качестве вспомогательного средства именно пальцевый счет, допускающий довольно эффективные системы счета.

4
слайд

Описание слайда:

5
слайд

Описание слайда:

Счет с помощью предметов Например, у народов доколумбовой Америки был весьма развит узелковый счет. Более того, система узелков выполняла также роль своего рода хроник и летописей, имея достаточно сложную структуру. Однако, использование ее требовало хорошей тренировки памяти. Чтобы сделать процесс счета более удобным, первобытный человек начал использовать вместо пальцев другие приспособления. Фиксация результатов счета производилась различными способами: нанесение насечек, счетные палочки, узелки и др.

6
слайд

Описание слайда:

Абак и счеты Счет с помощью группировки и перекладывания предметов явился предшественником счета на абаке — наиболее развитом счетном приборе древности, сохранившимся до наших дней в виде различного типа счетов. Абак явился первым развитым счетным прибором в истории человечества, основным отличием которого от предыдущих способов вычислений было выполнение вычислений по разрядам. Хорошо приспособленный к выполнению операций сложения и вычитания, абак оказался недостаточно эффективным прибором для выполнения операций умножения и деления.

7
слайд

Описание слайда:

Абак (V-IV век до н.э.) Китайские счеты суан-пан Японские счеты соробан Русские счеты

8
слайд

Описание слайда:

Введенные в 1614 г. Дж. Непером логарифмы оказали революционизирующее влияние на все последующее развитие счета, чему в значительной степени способствовало появление целого ряда логарифмических таблиц, вычисленных как самим Непером, так и рядом других известных в то время вычислителей. Впоследствии появляется целый ряд модификаций логарифмических таблиц. Однако, в практической работе использование логарифмических таблиц имеет ряд неудобств, поэтому Дж. Непер в качестве альтернативного метода предложил специальные счетные палочки (названные впоследствии палочками Непера), позволявшие производить операции умножения и деления непосредственно над исходными числами. В основу данного метода Непер положил способ умножения решеткой. Наряду с палочками Непер предложил счетную доску для выполнения операций умножения, деления, возведения в квадрат и извлечения квадратного корня в двоичной с.с., предвосхитив тем самым преимущества такой системы счисления для автоматизации вычислений. Логарифмы послужили основой создания замечательного вычислительного инструмента — логарифмической линейки, более 360 лет служащего инженерно-техническим работникам всего мира. Палочки Непера и логарифмическая линейка

9
слайд

Описание слайда:

10
слайд

Описание слайда:

В 1623 г. немецкий ученый Вильгельм Шиккард предложил свое решение на базе шестиразрядного десятичного вычислителя, состоявшего также из зубчатых колес, рассчитанного на выполнение сложения, вычитания, а также табличного умножения и деления. 1642 г. Первым реально осуществленным и ставшим известным механическим цифровым вычислительным устройством стала «Паскаля», созданная французским ученым Блезом Паскалем. Это было шести- или восьмиразрядное устройство на зубчатых колесах, способное суммировать и вычитать десятичные числа. Машина Шиккарда и Паскаля

11
слайд

Описание слайда:

1673 г. Через 30 лет после «Паскалины» появился «арифметический прибор» Готфрида Вильгельма Лейбница — двенадцатиразрядное десятичное устройство для выполнения арифметических операций, включая умножение и деление. Конец XVIII века. Жозеф Жаккард создает ткацкий станок с программным управлением при помощи перфокарт. Гаспар де Прони разрабатывает новую технологию вычислений в три этапа: разработка численного метода, составление программы последовательности арифметических действий, проведение вычислений путем арифметических операций над числами в соответствии с оставленной программой.

12
слайд

Описание слайда:

Гениальную идею Беббиджа осуществил Говард Айкен, американский ученый, создавший в 1944 г. первую в США релейно-механическую вычислительную машину. Ее основные блоки — арифметики и памяти были исполнены на зубчатых колесах. 1830-1846 гг. Чарльз Беббидж разрабатывает проект Аналитической машины — механической универсальной цифровой вычислительной машины с программным управлением. Были созданы отдельные узлы машины. Всю машину из-за ее громоздкости создать не удалось. Аналитическая машина Бэббиджа

13
слайд

Описание слайда:

В конце XIX в. Были созданы более сложные механические устройства. Самым важным из них было устройство, разработанное американцем Германом Холлеритом. Исключительность его заключалась в том, что в нем впервые была употреблена идея перфокарт и расчеты велись с помощью электрического тока. В 1897 г. Холлерит организовал фирму, которая в дальнейшем стала называться IBM. Машина Германа Холлерита Наиболее крупные проекты в это же время были выполнены в Германии (К. Цузе) и США (Д. Атанасов, Г. Айкен и Д. Стиблиц). Данные проекты можно рассматривать в качестве прямых предшественников универсальных ЭВМ.

14
слайд

Описание слайда:

1942-1943 гг. В Англии при участии Алана Тьюринга была создана вычислительная машина «Colossus». В ней было уже 2000 электронных ламп. Машина предназначалась для расшифровки радиограмм германского Вермахта. 1943 г. Под руководством американца Говарда Айкена, по заказу и при поддержке фирмы IBM создан Mark-1 — первый программно-управляемый компьютер. Он был построен на электромеханических реле, а программа обработки данных вводилась с перфоленты. Colossus и Mark-1

15
слайд

Описание слайда:

ЭВМ первого поколения 1946 – 1958 г.г. Основной элемент – электронная лампа. Из-за того, что высота стеклянной лампы — 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 — 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Ввод чисел в машины производился с помощью перфокарт, а программное управление осуществлялось, например в ENIAC, с помощью штекеров и наборных полей. Когда все лампы работали, инженерный персонал мог настроить ENIAC на какую-нибудь задачу, вручную изменив подключение 6 000 проводов.

16
слайд

Описание слайда:

Машины первого поколения Машины этого поколения: «БЭСМ», «ENIAC», «МЭСМ», «IBM -701», «Стрела», «М-2», «М-3», «Урал», «Урал-2», «Минск-1», «Минск-12», «М-20». Эти машины занимали большую площадь и использовали много электроэнергии. Их быстродействие не превышало 2-3 тыс. операций в секунду, оперативная память не превышала 2 Кб.

17
слайд

Описание слайда:

ЭВМ второго поколения 1959 – 1967 г.г. Основной элемент – полупроводниковые транзисторы. Первый транзистор способен был заменить ~ 40 электронных ламп и работает с большой скоростью. В качестве носителей информации использовались магнитные ленты и магнитные сердечники, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски. Большое внимание начали уделять созданию системного программного обеспечения, компиляторов и средств ввода-вывода.

18
слайд

Описание слайда:

Машины второго поколения В СССР в 1967 году вступила в строй наиболее мощная в Европе ЭВМ второго поколения “БЭСМ-6” (Быстродействующая Электронная Счетная Машина 6). Также в то же время были созданы эвм “Минск-2”, “Урал-14”. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве.

19
слайд

Описание слайда:

ЭВМ третьего поколения 1968– 1974 г.г. Основной элемент – интегральная схема. В 1958 году Роберт Нойс изобрел малую кремниевую интегральную схему, в которой на небольшой площади можно было размещать десятки транзисторов. Одна ИС способна заменить десятки тысяч транзисторов. Один кристалл выполняет такую же работу, как и 30-ти тонный “Эниак”. А компьютер с использованием ИС достигает производительности в 10 000 000 операций в секунд. В конце 60-х годов появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной В 1964 г., фирма IBM объявила о создании шести моделей семейства IBM 360 (System360), ставших первыми компьютерами третьего поколения.

20
слайд

Описание слайда:

Машины третьего поколения. Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина. Примеры машин третьего поколения – семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Емкость оперативной памяти достигает нескольких сотен тысяч слов.

Источник: knia.ru

Добавить комментарий