Иногда, когда в небе пролетает реактивный самолет, можно услышать громкий хлопок, по звуку напоминающий взрыв. Этот «врыв» является результатом преодоления самолетом звукового барьера.
Что такое звуковой барьер и почему мы слышим взрыв? И кто первым преодолел звуковой барьер
? Эти вопросы мы рассмотрим ниже.
Что такое звуковой барьер и как он образуется?
Аэродинамический звуковой барьер – ряд явлений, которые сопровождают движение любого летательного аппарата (самолета, ракеты и т.п.), скорость которого равна или превышает скорость звука. Другими словами, аэродинамический «звуковой барьер» — это резкий скачок сопротивления воздуха, который возникает при достижении самолетом скорости звука.
Звуковые волны перемещаются в пространстве с определенной скоростью, которая изменяется в зависимости от высоты, температуры и давления. Например, на уровне моря скорость звука составляет примерно 1220 км/час, на высоте 15 тыс. м – до 1000 км/час и т.д. Когда скорость самолета приближается к скорости звука, на него действуют определенные нагрузки. На обычных скоростях (дозвуковых) нос самолета «гонит» перед собой волну сжатого воздуха, скорость которой соответствует скорости звука. Скорость движения волны больше, чем обычная скорость самолета. В результате этого, воздух свободно обтекает всю поверхность самолета.
Но, если скорость самолета соответствует скорости звука, волна сжатия образуется не на носу, а перед крылом. В результате этого образуется ударная волна, увеличивающая нагрузки на крылья.
Чтобы летательный аппарат смог преодолеть звуковой барьер, кроме определенной скорости он должен иметь особую конструкцию. Именно поэтому авиаконструкторы разработали и применили в самолетостроении специальный аэродинамический профиль крыла и другие хитрости. В момент преодоления звукового барьера пилот современного сверхзвукового летательного аппарата ощущает вибрации, «скачки» и «аэродинамический удар», который на земле мы воспринимаем, как хлопок или взрыв.
Кто первым преодолел звуковой барьер?
Вопрос «первопроходцев» звукового барьера такой же, как и вопрос первых покорителей космоса. На вопрос «Кто первым преодолел сверхзвуковой барьер
?» можно дать разные ответы. Это и первый человек, преодолевший звуковой барьер, и первая женщина, и, как ни странно, первое устройство…
Первым, кто преодолел звуковой барьер, был летчик-испытатель Чарльз Эдвурд Йегер (Чак Игер). 14 октября 1947 года его экспериментальный самолет Bell X-1, оснащенный ракетным двигателем, выйдя в пологое пикирование с высоты 21379 м над Викторвиллем (Калифорния, США), достиг скорости звука. Скорость самолета в этот момент составила 1207 км/ч.
На протяжении своей карьеры военный летчик сделал большой вклад в развитие не только американской военной авиации, но и космонавтики. Чарльз Элвуд Йегер закончил свою карьеру в звании генерала ВВС США, побывав во многих уголках планеты. Опыт военного летчика пригодился даже в Голливуде при постановке эффектных воздушных трюков в художественном фильме «Летчик».
Историю Чака Йегера о преодолении звукового барьера рассказывает фильм «Парни что надо», который в 1984 году удостоился четырех статуэток Оскар.
Другие «покорители» звукового барьера
Кроме Чарльза Йегера, который первым преодолел звуковой барьер, были и другие рекордсмены.
Первый советский летчик-испытатель – Соколовский (26 декабря 1948).Первая женщина – американка Жаклин Кохран (18 мая 1953 г.). Пролетая над военно-воздушной базой Эдвардс (Калифорния, США), ее самолет F-86 преодолел звуковой барьер на скорости 1223 км/час.Первый гражданский самолет – американский пассажирский авиалайнер Douglas DC-8 (21 августа 1961 г.). Его полет, проходивший на высоте около 12,5 тыс. м, был экспериментальным и организовывался с целью сбора данных, необходимых для будущего проектирования передних кромок крыльев.Первый автомобиль, преодолевший звуковой барьер — Thrust SSC (15 октября 1997 г.).Первый человек, преодолевший звуковой барьер в свободном падении – американец Джо Киттингер (1960 г.), прыгнувший с парашютом с высоты 31,5 км. Однако после него, пролетая 14 октября 2012 г. над американским городом Розуэлл (Нью-Мексико, США), австриец Феликс Баумгартнер поставил мировой рекорд, покинув воздушный шар с парашютом на высоте 39 км. Его скорость при этом составила около 1342,8 км/час, а спуск на землю, большая часть пути которого проходила в свободном падении, занял всего 10 минут.Мировой рекорд преодоления звукового барьера летательным аппаратом принадлежит гиперзвуковой аэробаллистической ракете Х-15 класса «воздух-земля» (1967 г.), находящейся сейчас на вооружении российской армии. Скорость ракеты на высоте 31,2 км составила 6389 км/час. Хотелось бы отметить, что максимально возможная скорость передвижения человека в истории пилотируемых летательных аппаратов – 39897 км/час, которую в 1969 г. достиг американский космический корабль «Аполлон-10».
Первое изобретение, преодолевшее звуковой барьер
Как ни странно, но первым изобретением, преодолевшим звуковой барьер был… простой хлыст, придуманный древними китайцами 7 тыс. лет назад.
До изобретения в 1927 году моментальной фотографии, никто не мог подумать, что щелчок хлыста – это не просто удар ремешка о рукоятку, а миниатюрный сверхзвуковой щелчок. Во время резкого взмаха формируется петля, скорость которой увеличивается в несколько десятков раз и сопровождается щелчком. Петля преодолевает звуковой барьер на скорости порядка 1200 км/час.
Почему преодоление самолетом звукового барьера сопровождается взрывоподобным хлопком? И что такое «звуковой барьер»?
С «хлопком» происходит недоразумение, вызванное неверным пониманием термина «звуковой барьер». Этот «хлопок» правильно называть «звуковым ударом». Самолет, движущийся со сверхзвуковой скоростью, создает в окружающем воздухе ударные волны, скачки воздушного давления. Упрощенно эти волны можно представить себе в виде сопровождающего полет самолета конуса, с вершиной, как бы привязанной к носовой части фюзеляжа, а образующими, направленными против движения самолета и распространяющимися довольно далеко, например до поверхности земли.
Когда граница этого воображаемого конуса, обозначающая фронт основной звуковой волны, достигает уха человека, то резкий скачок давления воспринимается на слух как хлопок. Звуковой удар, как привязанный, сопровождает весь полет самолета, при условии что самолет движется достаточно быстро, пусть и с постоянной скоростью. Хлопком же кажется проход основной волны звукового удара над фиксированной точкой поверхности земли, где, например, находится слушатель.
Другими словами, если бы сверхзвуковой самолет с постоянной, но сверхзвуковой скоростью принялся летать над слушателем туда-сюда, то хлопок слышался бы каждый раз, спустя некоторое время после пролета самолета над слушателем на достаточно близком расстоянии.
А «звуковым барьером» в аэродинамике называют резкий скачок воздушного сопротивления, возникающий при достижении самолетом некоторой пограничной скорости, близкой к скорости звука. При достижении этой скорости характер обтекания самолета воздушным потоком меняется кардинальным образом, что в свое время сильно затрудняло достижение сверхзвуковых скоростей. Обычный, дозвуковой, самолет не способен устойчиво лететь быстрее звука, как бы его ни разгоняли, — он просто потеряет управление и развалится.
Для преодоления звукового барьера ученым пришлось разработать крыло со специальным аэродинамическим профилем и придумать другие ухищрения. Интересно, что пилот современного сверхзвукового самолета хорошо чувствует «преодоление» своим летательным аппаратом звукового барьера: при переходе на сверхзвуковое обтекание ощущается «аэродинамический удар» и характерные «скачки» в управляемости. Вот только с «хлопками» на земле эти процессы напрямую не связаны.
Перед тем, как самолет преодолеет звуковой барьер, может образоваться необычное облако, происхождение которого до сих пор не ясно. Согласно наиболее популярной гипотезе, рядом с самолетом происходит падение давления и возникает так называемая сингулярность Прандтля-Глауэрта
с последующей конденсацией капелек воды из влажного воздуха. Собственно, конденсат вы и видите на фотках внизу…
Нажмите на рисунок, чтобы увеличить его.
Звуковой барьер — это явление, возникающее в полёте самолёта или ракеты в момент перехода от дозвуковой к сверхзвуковой скорости полёта в атмосфере. При приближении скорости самолёта к скорости звука (1200 км/ч) в воздухе перед ним возникает тонкая область, в которой происходит резкое увеличение давления и плотности воздушной среды. Это уплотнение воздуха перед летящим самолётом называется ударной волной. На земле прохождение ударной волны воспринимается как хлопок, похожий на звук выстрела. Превысив скорость звука, самолёт проходит сквозь эту область повышенной плотности воздуха, как бы прокалывает её – преодолевает звуковой барьер. Долгое время преодоление звукового барьера представлялось серьёзной проблемой в развитии авиации. Для её решения потребовалось изменить профиль и форму крыла самолёта (оно стало более тонким и стреловидным), сделать переднюю часть фюзеляжа более заострённой и снабдить самолёты реактивными двигателями. Впервые скорость звука была превышена в 1947 г. Ч. Йигером на самолёте Белл Х-1 (США) с жидкостным ракетным двигателем, запущенном с самолёта Боинг В-29. В России звуковой барьер первым преодолел в 1948 г. лётчик О. В. Соколовский на экспериментальном самолёте Ла-176 с турбореактивным двигателем.
Видео.
Скорость Звука.
Скорость распространения (относительно среды) малых возмущений давления. В совершенном газе (например, в воздухе при умеренных температурах и давлении) С. з. не зависит от характера распространяющегося малого возмущения и одинакова как для монохроматических колебаний различной частоты (), так и для слабых ударных волн. В совершенном газе в рассматриваемой точке пространства С. з. а зависит только от состава газа и его абсолютной температуры Т:
a = (dp/d(())1/2 = ((()p/(())1/2 = ((()RT/(())1/2,
где dp/d(() — производная давления по плотности для изоэнтропического процесса, (-) — показатель адиабаты, R — универсальная газовая постоянная, (-) — молекулярная масса (в воздухе a 20,1T1/2 м/с. при 0(°)C a = 332 м/с).
В газе с физико-химическими превращениями, например, в диссоциирующем газе, С. з. будет зависеть от того, как — равновесно или неравновесно — протекают эти процессы в волне возмущения. При термодинамическом равновесии С. з. зависит только от состава газа, его температуры и давления. При неравновесном протекании физико-химических процессов имеет место дисперсия звука, то есть С. з. зависит не только от состояния среды, но и от частоты колебаний (). Высокочастотные колебания ((тт), ()) — время релаксации) распространяются с замороженной С. з. aj, низкочастотные ((,) 0) — с равновесной С. з. ae, причём aj > ae. Отличие aj от ai как правило, невелико (в воздухе при Т = 6000(°)С и p = 105 Па оно составляет около 15%). В жидкостях С. з. значительно выше, чем в газе (в воде a 1500 м/с)
Необычную картину можно иногда наблюдать во время полета реактивных самолетов, которые словно выныривают из облака тумана. Это явление называется эффектом Прандтля-Глоерта и заключается в возникновении облака позади объекта, движущегося на околозвуковой скорости в условиях повышенной влажности воздуха.
Причина возникновения этого необычного явления заключается в том, что летящий на высокой скорости самолёт создаёт область повышенного давления воздуха впереди себя и область пониженного давления позади. После пролёта самолёта область пониженного давления начинает заполняться окружающим воздухом. При этом в силу достаточно высокой инерции воздушных масс сначала вся область низкого давления заполняется воздухом из близлежащих областей, прилегающих к области низкого давления.
Этот процесс локально является адиабатическим процессом, где занимаемый воздухом объём увеличивается, а его температура понижается. Если влажность воздуха достаточно велика, то температура может понизиться до такого значения, что окажется ниже точки росы. Тогда содержащийся в воздухе водяной пар конденсируется в виде мельчайших капелек, которые образуют небольшое облако.
Кликабельно 2600 рх
По мере того, как давление воздуха нормализуется, температура в нём выравнивается и вновь становится выше точки росы, и облако быстро растворяется в воздухе. Обычно время его жизни не превышает долей секунды. Поэтому при полёте самолёта кажется, что облако следует за ним — вследствие того, что оно постоянно образуется сразу позади самолёта, а затем исчезает.
Существует распространённое заблуждение, что возникновение облака из-за эффекта Прандтля-Глоерта означает, что именно в этот момент самолёт преодолевает звуковой барьер. В условиях нормальной или слегка повышенной влажности облако образуется только при больших скоростях, близких к скорости звука. В то же время при полётах на малой высоте и в условиях очень высокой влажности (например, над океаном) этот эффект можно наблюдать и при скоростях, значительно меньших скорости звука.
Кликабельно 2100 рх
С “хлопком” происходит недоразумение, вызванное неверным пониманием термина “звуковой барьер”. Этот “хлопок” правильно называть “звуковым ударом”. Самолет, движущийся со сверхзвуковой скоростью, создает в окружающем воздухе ударные волны, скачки воздушного давления. Упрощенно эти волны можно представить себе в виде сопровождающего полет самолета конуса, с вершиной, как бы привязанной к носовой части фюзеляжа, а образующими, направленными против движения самолета и распространяющимися довольно далеко, например до поверхности земли.
Клкиабельно 2500 рх
Когда граница этого воображаемого конуса, обозначающая фронт основной звуковой волны, достигает уха человека, то резкий скачок давления воспринимается на слух как хлопок. Звуковой удар, как привязанный, сопровождает весь полет самолета, при условии что самолет движется достаточно быстро, пусть и с постоянной скоростью. Хлопком же кажется проход основной волны звукового удара над фиксированной точкой поверхности земли, где, например, находится слушатель.
Другими словами, если бы сверхзвуковой самолет с постоянной, но сверхзвуковой скоростью принялся летать над слушателем туда-сюда, то хлопок слышался бы каждый раз, спустя некоторое время после пролета самолета над слушателем на достаточно близком расстоянии.
А вот посмотрите какой интересный кадр! Первый раз такое вижу!
Кликабельно 1920 рх
— кому на стол!
В настоящее время проблема «преодоления звукового барьера», по-видимому, является по существу задачей мощных силовых двигателей. Если имеется достаточная сила тяги для преодоления возрастания сопротивления, встречающегося до звукового барьера и непосредственно на нем, так что самолет может быстро пройти через критический диапазон скоростей, то не следует ожидать особых трудностей. Возможно, самолету было бы легче летать в сверхзвуковом диапазоне скоростей, чем в переходном диапазоне между дозвуковой и сверхзвуковой скоростью.
Таким образом, ситуация отчасти аналогична той, которая преобладала в начале этого века, когда братья Райт смогли доказать возможность активного полета, потому что у них был легкий двигатель с достаточной тягой. Если бы мы имели соответствующие двигатели, то сверхзвуковой полет стал бы довольно обычным. До недавних пор преодоление звукового барьера в горизонтальном полете осуществлялось только с использованием довольно неэкономичных двигательных установок, таких как ракетные и прямоточные воздушно-реактивные двигатели (ПВРД) с очень высоким потреблением топлива. Экспериментальные самолеты типа Х-1 и Скай-рокет (Sky-rocket) оснащены ракетными двигателями, которые надежны только в течение нескольких минут полета, или же турбореактивными двигателями с форсажными камерами, но на момент написания этой книги создано несколько самолетов, которые могут летать со сверхзвуковой скоростью в течение получаса. Если вы прочитаете в газете, что самолет «прошел через звуковой барьер», то это часто означает, что он сделал это посредством пикирования. В этом случае сила тяжести дополнила недостаточную силу тяги.
Существует странное явление, связанное с этими фигурами высшего пилотажа, которое я хотел бы отметить. Предположим, что самолет
приближается к наблюдателю на дозвуковой скорости, пикирует, достигнув сверхзвуковой скорости, затем выходит из пикирования и снова продолжает полет на дозвуковой скорости. В этом случае наблюдатель на земле зачастую слышит два громких гулких звука, довольно быстро следующих друг за другом: «Бум, бум!» Некоторые ученые предложили объяснения происхождения двойного гула. Акерет в Цюрихе и Морис Руа в Париже оба предположили, что гул возникает благодаря накоплению звуковых импульсов, таких как шум двигателя, издаваемых в то время, когда самолет проходил через звуковую скорость. Если самолет двигается по направлению к наблюдателю, то издаваемый самолетом шум достигнет наблюдателя за более короткий промежуток времени по сравнению с интервалом, в котором он был издан. Таким образом, всегда происходит некоторое накопление звуковых импульсов при условии, что источник звука двигается к наблюдателю. Однако если источник звука двигается со скоростью близкой к скорости звука, то накопление бесконечно усиливается. Это становится очевидным, если считать, что весь звук, издаваемый источником, двигающимся точно со скоростью звука прямо по направлению к наблюдателю, достигнет последнего в один короткий момент времени, а именно, когда источник звука приблизился к местонахождению наблюдателя. Причина состоит в том, что звук и источник звука будут передвигаться с одинаковой скоростью. Если бы звук двигался в этот период времени со сверхзвуковой скоростью, то последовательность воспринимаемых и издаваемых звуковых импульсов была бы обратной; наблюдатель различит сигналы, издаваемые позднее, прежде чем он воспримет сигналы, изданные ранее.
Процесс двойного гула, в соответствии с этой теорией, можно проиллюстрировать диаграммой на рис. 58. Предположим, что самолет двигается прямо по направлению к наблюдателю, но с переменной скоростью. Кривая АВ показывает перемещение самолета в зависимости от времени. Угол наклона касательной к кривой указывает мгновенную скорость самолета. Параллельные прямые, показанные на диаграмме, указывают распространение звука; угол наклона в этих прямых соответствует скорости звука. Сначала на участке скорость самолета дозвуковая, затем на участке — сверхзвуковая, и наконец, на участке — снова дозвуковая. Если наблюдатель находится на начальном расстоянии D, то точки, показанные на горизонтальной линии соответствуют последовательности воспринимаемых им
Рис. 58. Диаграмма расстояния-времени самолета, летящего с переменной скоростью. Параллельные линии с углом наклона в показывают распространение звука.
звуковых импульсов. Мы видим, что звук, издаваемый самолетом во время второго прохождения звукового барьера (точка ), достигает наблюдателя раньше, чем звук, издаваемый во время первого прохождения (точка ). В эти два мгновения наблюдатель воспринимает через бесконечно малый интервал времени импульсы, издаваемые во время ограниченного периода времени. Следовательно, он слышит гул, похожий на взрыв. Между двумя звуками гула он одновременно воспринимает три импульса, издаваемые в разное время самолетом.
На рис. 59 схематично показана интенсивность шума, которую можно ожидать в этом упрощенном случае. Следует отметить, что накопление звуковых импульсов в случае приближающегося источника звука является тем же процессом, который известен как эффект Доплера; однако характеристика последнего эффекта обычно ограничена изменением высоты тона, связанной с процессом накопления. Интенсивность воспринимаемого шума трудно рассчитать, поскольку она зависит от механизма образования звука, который не очень хорошо известен. К тому же процесс осложняется формой траектории, возможным эхом, а также ударными волнами, которые наблюдаются в различных частях самолета во время полета и энергия которых преобразуется в звуковые волны после того, как самолет уменьшит скорость. В некоторых
Рис. 59. Схематичное представление интенсивности шума, воспринимаемого наблюдателем.
последних статьях по этой теме явление двойного гула, иногда тройного, наблюдаемого в сверхскоростном пикировании, приписывается этим ударным волнам.
Проблема «преодоления звукового барьера» или «звуковой стены», по-видимому, волнует воображение общественности (английский кинофильм под названием «Разрушение звукового барьера» дает некоторое представление о задачах, связанных с полетом через единичный Мах); летчики и инженеры обсуждают проблему как серьезно, так и в шутку. Следующий «научный доклад» околозвукового полета демонстрирует прекрасное сочетание технических знаний и поэтических вольностей :
Мы плавно скользили по воздуху со скоростью 540 миль в час. Мне всегда нравился маленький XP-AZ5601-NG за его простое управление, и за то, что индикатор Прандтля-Рейнольдса запрятан в правом углу вверху панели. Я проверил приборы. Воду, топливо, обороты в минуту, КПД Карно, путевую скорость, энтальпию. Все ОК. Курс 270°. Полнота сгорания в норме — 23 процента. Старина ТРД урчал спокойно как всегда, и зубы Тони едва постукивали от его 17 створок, перекинутых им над Шенектади. Из двигателя просачивалась только тонкая струйка масла. Вот это жизнь!
Я знал, что двигатель самолета хорош для скоростей выше тех, которые мы когда-либо пытались развивать. Погода была такая ясная, небо такое голубое, воздух такой спокойный, что я не устоял и прибавил скорость. Я медленно переместил рычаг вперед на одну позицию. Регулятор только слегка качнулся, и спустя пять минут или около того все было спокойно. 590 миль в час. Я опять нажал на рычаг. Засорились только два сопла. Я нажал на очиститель узких отверстий. Снова открыты. 640 миль в час. Тихо. Выхлопная труба едва совсем не согнулась, несколько квадратных дюймов с одной стороны все еще открыты. Руки у меня так и чесались на рычаге, и я снова нажал на него. Самолет разогнался до 690 миль в час, пройдя через критический отрезок, не сломав ни единого иллюминатора. В кабине становилось тепло, поэтому я подал еще немного воздуха в вихревой холодильник. Мах 0,9! Я никогда не летал быстрее. Я мог видеть небольшое сотрясение за окном иллюминатора, поэтому отрегулировал форму крыла, и оно исчезло.
Тони теперь дремал, и я выпустил дымок из его трубки. Я не мог устоять и прибавил скорость еще на один уровень. Ровно за десять минут мы сравнялись с Махом 0,95. Сзади в камерах сгорания общее давление дьявольски падало. Вот это была жизнь! Индикатор Кармана показывал красный, но мне было все равно. Свеча Тони все еще горела. Я знал, что гамма на нуле, но мне было наплевать.
От возбуждения у меня кружилась голова. Еще немного! Я положил руку на рычаг, но как раз в этот момент Тони потянулся, и его колено задело мою руку. Рычаг подпрыгнул на целых десять уровней! Трах! Небольшой самолет содрогнулся во всю длину, а колоссальная потеря скорости отбросила нас с Тони на панель. Казалось, что мы ударились о твердую кирпичную стену! Я мог видеть, что нос самолета был смят. Я посмотрел на махометр и замер! 1,00! Боже, в один миг подумал я, мы на максимуме! Если я не заставлю его сбавить скорость, прежде чем он соскользнет, мы окажемся в убывающем сопротивлении! Слишком поздно! Мах 1,01! 1,02! 1,03! 1,04! 1,06! 1,09! 1,13! 1,18! Я был в отчаянии, но Тони знал, что делать. В мгновение ока он дал задний
ход! Горячий воздух ринулся в выхлопную трубу, он сжат в турбине, вновь прорвался в камеры, расширил компрессор. Топливо начало поступать в баки. Измеритель энтропии качнулся к полному нулю. Мах 1,20! 1,19! 1,18! 1,17! Мы спасены. Он сполз назад, он сместился назад, пока Тони и я молились, чтоб не залип делитель потока. 1,10! 1,08! 1,05!
Трах! Мы ударились о другую сторону стены! Мы в ловушке! Не хватает отрицательной тяги, чтоб прорваться назад!
В то время как мы съежились от страха перед стеной, хвост маленького самолета развалился и Тони крикнул: «Зажигай ракетные ускорители!» Но они повернули не в ту сторону!
Тони протянул руку и подтолкнул их вперед, линии Маха струились с его пальцев. Я поджог их! Удар был ошеломляющим. Мы потеряли сознание.
Когда я пришел в себя, наш маленький самолет, весь искореженный, как раз проходил через нулевой Мах! Я вытащил Тони, и мы тяжело упали на землю. Самолет замедлял ход на востоке. Через несколько секунд мы услышали грохот, как будто он ударился о другую стену.
Не было найдено ни единого винта. Тони занялся плетением сетки, а я побрел в МТИ.
Источник: