Источник питания может использоваться также в медицине
Росатом презентовал на IX форуме «Атомэкспо-2017» одну из последних разработок — ядерную батарейку на основе радиокативного изотопа никель-63. Уникальный источник питания может использоваться в медицине и космосе, позволяя сэкономить миллионы долларов на оборудовании. При этом выставочный макет имеет миниатюрные размеры — всего 1 куб сантиметр, а срок его службы составляет минимум 50 лет.
«Простыми словами, это ядерная батарейка, а если говорить научным языком — это источник бета-излучения, который состоит из бета-вольтарического элемента и полупроводникового преобразователя на основе алмаза. Никеля-63 в природе не существует, его получают путем облучения нейтронами природного изотопа никель-62 в ядерном реакторе с дальнейшей радиохимической переработкой и разделением на газовых центрифугах», — рассказал в беседе с «МК» заместитель начальника лаборатории НИИ НПО «Луч», предприятия научного дивизиона «Росатома» Александр Павкин. Он отметил, что свойства никеля-63 делают батарейку очень удобным, компактным, а главное безопасным элементом питания с удельной мощностью в 1 микроватт и напряжением 2 Вольт. Безопасность такого источника питания специалист объяснил тем, что никель-63 считается «мягким» бета-излучателем, поскольку в его случае нет ни нейтронного, ни гамма-излучения, а электроны бета-излучения полностью поглощаются преобразователем и полностью безвредны для человека.
При этом мощность батарейки можно увеличивать или уменьшать исходя из потребностей: чем больше габариты, чем больше мощность. По словам Павкина, мощности в 1 микроватт достаточно для использования батарейки в кардиостимуляторе или нейростимуляторе. Специалист также добавил, что помимо медицины такие источники питания могут применяться в космонавтике, а также как элемент питания в труднодоступных районах и экстремальных условиях.
Стоимость такой чудо-батарейки подсчитать пока сложно: все зависит от требований заказчика к ее мощности. Но в любом случае, использование такого элемента окупит его закупочную стоимость очень быстро. «Для сравнения: чтобы отправить в космос 1 кг проводов нужен $1 млн, если мы заменим их на беспроводной источник питания выгода очевидна», — подчеркнул представитель «Росатома».
Разработка выполнена совместно НИИ «Луч», базирующимся в Подольске, совместно с Технологическим институтом сверхтвердых и новых углеродных материалов (ТИСНУМ, Троицк). В настоящее время батарейка является опытным образцом, однако «Росатом» уже ведет подготовку к запуску устройства в серийное производство. Как отметил Александр Павкин, интерес к разработке проявили многие компании и потенциальные инвесторы, ознакомившиеся с образцом на выставке. «Росатом» планирует выходить со своим изобретением на внутренний и внешний рынки. Представители госкорпорации отмечают, что благодаря инновационным свойствам цена на новинку будет очень конкурентноспособной и позволит завоевать популярность не только в России, но и на Западе.
Как отмечают ученые и специалисты, использование источников питания на основе никеля-63 создаст предпосылки для технологического прорыва во многих областях. В промышленности такие элементы могут использоваться в датчиках контроля состояния зданий, трубопроводов, они пригодятся для обеспечения работы электротехнического оборудования, в том числе для проектов по освоению Арктики, для обеспечения работы космической техники и робототехники. Серийное производство новых источников позволит создать новую линейку устройств в микроэлектронике, в частности, автономные микропроцессорные цифровые устройства со встроенным источником питания. При этом Россия выступает новатором в производства высокообогащенного никеля-63: ни в какой другой стране его не используют.
Разработать бета-вольтаические батареи — источник питания нового поколения, пытаются уже полвека, однако до промышленного выпуска никто до сих пор не дошел. Начинка для батарейки, изотоп никель-63, не встречается в природе: его можно наработать только искусственно.
В некоторых странах, например США, придумали технологии, позволяющие получить никель, но только низкообогащенный — с содержанием 63-го изотопа около 20 %. С ним эффективную ядерную батарейку не сделаешь. Предприятия «Росатома» добились более чем 80 %-ного обогащения.
Российская ядерная батарейка — совместный проект ГХК, ряда других отраслевых предприятий и Академии наук. «В рамках кооперации несколько задач, основная — системная интеграция, — рассказал «СР» заместитель начальника технического отдела ГХК Дмитрий Друзь. — Сейчас выполняется ряд опытно-конструкторских работ по технологии получения никеля с высоким обогащением по 63-му изотопу и ряд работ по созданию опытного образца элемента питания».
Принцип действия ядерной батарейки основан на бета-вольтаическом эффекте: бета-излучение радиоактивного изотопа никеля с помощью полупроводника преобразуется в электрическую энергию. Аналог фотоэлектрического эффекта, с той разницей, что образование электрон-дырочных пар в кристаллической решетке полупроводника происходит под воздействием бета-частиц (быстрых электронов), а не фотонов.
«Принципиально батарейка на основе изотопа никель-63 состоит из четырех частей: полупроводникового преобразователя бета-излучения, нанесенного на него сверхтонким слоем высокообогащенного изотопа никель-63, контакторов элемента питания и миниатюрного герметичного корпуса», — рассказывает Дмитрий Друзь.
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИСТОЧНИКА
100 мкВт/см
УДЕЛЬНАЯ МОЩНОСТЬ
16.6,2 мм
ГАБАРИТЫ
>50 лет
СРОК СЛУЖБЫ
20 %
Первый образец ядерной батарейки на ГХК намерены получить в конце 2016-го — начале 2017 года. По форме и габаритам источники адаптируют под элементы питания микроваттного класса, в частности для нейро- и кардиостимуляторов. В дальнейшем характеристики и особенности продукта будут зависеть от области применения и требований заказчика. «Это могут быть привычные форм-факторы — «таблетки» или миниатюрные пальчиковые батарейки, либо микроминиатюрные форм-факторы», — перечисляет Дмитрий Друзь.
Технология прорывная — опережающая все известные на сегодня западные аналоги даже не на шаг, а на несколько шагов. Для реализации проекта необходимо решить фундаментальные и прикладные научные задачи, а также применить промышленные технологии «Росатома», которые опять-таки обошли западные. И все это в целом, как мы рассчитываем, позволит к началу следующего года создать уникальный продукт. Петр Гаврилов, генеральный директор ГХК
На волне интереса к новинке в прессе появились публикации о разработках других организаций.
Так, коллектив ученых из МИСиСа, ТИСНУМа, МФТИ и НПО «Луч» создал прототип нового преобразователя энергии ионизирующего излучения изотопа никель-63. Но это не ядерная батарейка, а ядерный генератор. Руководитель исследовательского коллектива, заведующий кафедрой материаловедения полупроводников и диэлектриков МИСиСа, профессор Юрий Пархоменко комментирует: «Перед нами стояла принципиально другая задача — разработка радиационно-стимулированного механоэлектрического генератора переменного напряжения, действующего за счет энергии ионизирующего излучения изотопа никель-63».
Сердце этого элемента питания — кантилевер, тонкая пластина из пьезокристаллического ниобата лития с бидоменной структурой. Энергия, выделяемая в изотопе никель-63 при бета-распаде, преобразуется в энергию механических колебаний пьезокристаллического кантилевера, которая, в свою очередь, преобразуется в переменное напряжение на электродах.
И бета-вольтаические, и микроэлектромеханические источники (аналог разработки МИСиСа и партнеров) появились более 10 лет назад, но всем им не хватает КПД и мощности, которую может дать никель-63 высокого обогащения. Как отмечает Дмитрий Друзь, уже на нынешней стадии НИОКР понятно, что батарейка ГХК превзойдет все образцы элементов питания, использующие энергию бета-распада никеля-63. «Наш источник имеет многократные преимущества как по эффективности и мощности, так и по габаритам и неприхотливости. Его можно применять в самых экстремальных условиях», — подчеркнул Дмитрий Друзь.
Ядерная батарейка под брендом «Росатома» совсем скоро станет реальностью, и есть все основания полагать, что этот продукт перевернет не только отечественный, но и мировой рынок.
Потенциальные потребители
Медицинские кардиостимуляторы используют в качестве источника энергии плутоний-238 и служат порядка 10 лет. Замена кардиостимуляторов — сложная операция, с ядерной батарейкой деимплантация не понадобится в течение 50 лет. В атомной промышленности ядерные батарейки можно установить в датчики контроля температуры и радиационного излучения. Ядерные батарейки станут незаменимым компонентом сетей автономного навигационного оборудования, систем телеметрии и онлайн-мониторинга широкого спектра параметров. На ура долгоиграющие источники примут создатели различных подводных систем, покорители Севера, военная промышленность.
Производство
Никель-63 — чистый источник энергии: мягкое бета-излучение не сопровождается вредным гамма-излучением. Период полураспада — 100 лет. Для наработки изотопа требуется две стадии обогащения: сначала на центрифугах по никелю-62, затем, после обогащения и выделения, — по никелю-63.
В каждый дом?
Кто из нас не хочет, чтобы смартфоны, компьютеры или планшеты работали 50 лет без подзарядки? С точки зрения безопасности препятствий нет: бета-излучение никеля-63 поглощается корпусом батарейки. Однако есть опасение, что найдутся желающие разобрать батарейку. И вот тогда могут быть негативные последствия. Есть еще одно препятствие для доступа широкого потребителя к ядерным батарейкам и генераторам — цена. Из-за сложной технологии получения 1 г никеля-63 стоит сотни тысяч рублей. Даже при том что батарейке нужно гораздо меньше грамма, стоит она дорого. Однако, когда продукт апробируют в наукоемких, высокотехнологичных отраслях, спрос вырастет, и тогда начнется промышленное производство никеля-63, а себестоимость станет гораздо ниже. Важный вопрос: как утилизировать компактные ядерные источники энергии? «Оптимально сдавать их на переработку для извлечения не распавшегося изотопа», — считает замначальника технического отдела ГХК Дмитрий Друзь.
Наконец на нашей аккумуляторной поляне засветился Росатом, показав на форуме «Атомэкспо-2017»
ядерную батарейку
со сроком службы не менее 50 лет. Пользуясь этим знаменательным поводом, рассмотрим перспективы использования мирного атома для мобильных устройств.
Атомный (ядерный) аккумулятор
— это все-таки батарейка, а не аккумулятор, так как — это по определению одноразовый источник электрического тока, без возможности перезаряда. Несмотря на это, воображение публики активно будоражит перспектива использования атомных аккумуляторов в мобильных устройствах. Но обо всем по порядку.
Что именно представил Росатом на форуме? Генеральный директор ФГУП «НИИ НПО Луч», Павел Зайцев заявил, что представленный источник, работающий на изотопе Ni63, способен в течение 50 лет выдавать 1mkW с напряжением 2V. Павел Зайцев вполне откровенно говорит про скромные вольт-амперные характеристики, делая основной упор на длительный срок службы. Наверно, исключительно из личной скромности, Генеральный директор ФГУП «НИИ НПО Луч» указал в технических характеристиках только мощность, а не общепринятую ёмкость. Но мы не будем придавать этому большое значение и просто рассчитаем ёмкость:
C = 0,000001W * 50 лет * 365 дней * 24 часа / 2V = 219mA
Получается, что ёмкость ядерной батарейки, размером с небольшой универсальный аккумулятор , всего лишь как у литий-полимерного (Li-Pol) аккумулятора для блютуз наушников! Павел Зайцев предполагает использование своей ядерной батарейки в кардиологии, что вызывает большие сомнения при столь огромных размерах. Возможно эта ядерная батарея может рассматриваться как некий прототип получения электричества из изотопов, но Росатому потребуется уменьшить батарею в тысячи раз, чтобы соответствовать современным электрокардиостимуляторам.
Совсем не порадовала стоимость ядерного аккумулятора
— директор государственного унитарного предприятия объявил цену изотопа никеля в долларах (!) 4000USD/грамм. Означает ли это, что основной компонент будет приобретаться за границей России? А сколько грамм необходимо на изготовление одного аккумулятора? Одновременно с этим было замечено, что потребуются также алмазные элементы (также не ясно сколько?), но стоимость которых (уже в рублях) колеблется от 10 000 до 100 000 рублей за штуку. Какова же будет полная стоимость такой батарейки? Электрокардиостимуляторы в России устанавливаются по полису ОМС бесплатно в экстренных случаях или при наличии квоты. При недостаточности квоты и за электрокардиостимуляторы иностранного производства больным приходится оплачивать самостоятельно. Будут ли ядерные батареи устанавливаться за счет бюджета ОМС или пожилые люди должны будут приобретать их отдельно? Если бы руководство Росатома впомнило, что российские пенсионеры живут в режиме «день простоять и ночь продержаться», то, наверно, осознало бы тот нелепый диссонанс между космическим сроком службы и стоимостью. Это наталкивает на мысль, что уважаемый Павел Зайцев активно осваивает средства, выделенные на НИОКР, ничуть не задумываясь о конечных пользователях. Аналогичную оценку «изобретения» Росатома дают пользователи социальных сетей:
Едва ли ее где-нибудь получится использовать. Я более чем уверен, что бюджет как всегда освоили, часть его потратили на презентацию, а само изделие никто никогда не увидит:)
Заявленный срок службы (50 лет), как мы догадались — это как раз половина периода полураспада Ni 63
(100лет). Такую же логику используют ученые Бристольского университета в концептуальном ролике. В отличие от батарейки Росатома, бристольская атомная батарейка использует изотоп C 14 и может работать 5730 лет! В Бристольском университете правда забыли поделить на 2, но и 2865 лет слишком много для кардиостимулятора. Уникальность бристольской концепции заключается в том, что проблема ядерных отходов решается путем переработки их в ядерные батарейки
.
Если внимательно прослушать и перевести текст этого ролика, то открывается гораздо больше интересной информации. Сначала подробно рассказывается о происхождении изотопа С 14
С 1940 Англия сделала много ядерных реакторов научного, военного и гражданского назначения. Все эти реакторы используют уран как топливо, а внутри реактор сделан из графитовых блоков. Эти графитовые блоки используются в процессе ядерного расщепления, позволяя контролировать цепную реакцию, которая даёт постоянный источник тепла. Это тепло потом используется, чтобы превратить воду в пар, которое потом крутит турбины, чтобы сделать электричество. Ядерные электростанции производят ядерные отходы, которые необходимо безопасно утилизировать. Надо просто подождать, чтобы эти отходы перестали быть радиоактивными. К сожалению, это занимает тысячи и миллионы лет. Это также требует очень много денег, чтобы контролировать безопасность в течение этих многих лет. Так как мы используем графитовые реакторы, Англия создала 95000 тон графитовых блоков содержащих радиацию. Этот графит только один из форм углерода, простой и стабильный элемент, но если положить эти блоки в высоко радиоактивное место, то тогда часть углерода превращается в углерод 14 . Углерод 14 может превратиться обратно в обычный углерод 12 когда её дополнительная энергия уйдет. Но это очень долгий процесс потому что период полураспада углерода 14 составляет 5730 лет.
Недавно ученные из университета Bristol»s Cabot Institute продемонстрировали, что углерод 14
концентрируется в блоках радиацией снаружи. Это значит, что возможно убрать большинство радиации нагревая их — большинство радиации выходит как газ, который потом может быть собран. Оставшиеся графитовые блоки все-равно радиоактивны, но не так сильно, это значит, что утилизировать их будет проще и дешевле. Радиоактивный углерод 14 в форме газа, может быт переделан при низких давлениях и высоких температурах в алмаз — это еще одна форма углерода. Искусственные алмазы, сделанные из радиоактивного углерода, излучают поток бета-излучения, которое может создать электрический ток. Это дает нам ядерную энергию алмазной батареи. Чтобы она была безопасной для нашего использования она покрывается слоем не радиоактивного алмаза, который полностью поглощает всю радиацию и превращает её в электричество почти на 100%. Там нет движущейся частей, ее не надо обслуживать, алмаз просто производит электричество. Так как алмаз самое твердое вещество на свете, то ни какое другое вещество не может дать такую защиту для радиоактивного углерода 14 . Поэтому снаружи можно обнаружить очень маленькое количество радиации. Но это почти то же самое количество радиации, сколько выделяет банан, так что оно совсем безопасно. Как мы уже сказали только половина углерода 14 распадается через каждый 5730 лет, это значит что наша батарея-бриллиант имеет удивительное время жизни — она разрядится на 50% только в 7746 году. Эти бриллиантовые батареи будут лучше всего использованы там, где нельзя менять обычные батарей. Например в спутниках для космических исследований или для имплантированных устройств, таких как кардиостимуляторы.
Мы просим всех отправлять свои предложения на #diamondbattery. Разработка этой новой технологии решила бы много проблем, например: ядерного мусора, чистого электричества и увеличения срока службы батарей. Это перенесет нас в «бриллиантовый век» производства энергии.
Очень красивая концепция ученых из Бристоля 2016 года и очень скромная коробочка Росатома возможно (?) когда-нибудь будут доработаны до алмазных электростанций, но никак не ядерных батареек для мобильных устройств. Сложно будет уговорить людей ходить с Фукусимой в кармане, даже если за это начнут доплачивать.
Использование атома в мирных целях — это один из спорных вопросов современности, если учесть, что энергетика — это наиболее монополизированная отрасль экономики, когда в цене KW электроэнергии более 90% составляют налоги и сборы. Эффективность мирного атома вызывают сомнения, так как в цену условно дешевой атомной энергии не включается стоимость техногенных последствий. Поэтому некоторые страны, в том числе Германия и Япония приняли решение полностью отказаться от использования атома в энергетике. Ведь развивая возобновляемые источники энергии, можно не только полностью отказаться от атомной энергии, но и создать высокотехнологическую отрасль с миллионами высококвалифицированных рабочих мест.
Подводя итог, мы, скорее всего, имеем очередную технодурилку типа «Супераккумулятор «, а не прорывное «изобретение» бриллиантового века. Другими словами, применять мирный атом в микроэнергетике — это что свинью брить — визгу много, а шерсти мало!
На предприятии госкорпорации «Росатом» «Горно-химический комбинат» (ГХК, Железногорск, Красноярский край) завершилось преобразование (конверсия) газа, обогащенного по целевому изотопу никель-63 (Ni-63), в форму, пригодную для нанесения на полупроводниковый преобразователь для получения опытного образца источника энергии. Об этом РИА Новости сообщил представитель пресс-службы предприятия.
В настоящий момент ожидается поставка соответствующих комплектующих для нанесения Ni-63 и окончательной сборки опытного образца «ядерной батарейки».
В основе принципа работы бета-вольтаических источников электроэнергии лежит превращение энергии радиоактивного бета-распада в электричество с помощью полупроводникового преобразователя. Свойства никеля-63 делают его очень удобной основой миниатюрных, безопасных и не требующих обслуживания бета-вольтаических источников питания с длительным (не менее 50 лет) сроком службы и высокой, до 100 микроватт на кубический сантиметр, удельной мощностью. Такие источники питания можно использовать в труднодоступных районах и в экстремальных условиях. С точки зрения безопасности для потребителей преимущество никеля-63 заключается в том, что это так называемый «мягкий» бета-излучатель, поэтому излучение полностью экранируется корпусом элемента питания.
Элементы питания на основе Никеля-63. Фото: YouTube
Никеля-63 в природе не существует, поэтому его получают путем облучения нейтронами природного изотопа никель-62 в ядерном реакторе с дальнейшей радиохимической переработкой и разделением на газовых центрифугах.
«Горно-химический комбинат» выступает системным интегратором проекта. ГХК организовал работы по двум направлениям: получение высокообогащенного изотопа Ni-63 и создание специальной структуры полупроводникового преобразователя. В проекте задействованы предприятия Росатома, обладающие уникальными компетенциями. В частности, за обогащение никеля по изотопу Ni-63 отвечает «Электрохимический завод» (Зеленогорск, Красноярский край, входит в топливную компанию Росатома ТВЭЛ). Завершающий этап, сборка опытного образца источника питания, пройдёт на ГХК.
Как отметил представитель пресс-службы ГХК, в основе конструкции полупроводникового преобразователя лежит новый дизайн, который качественно повышает эффективность всех компонентов. По мнению специалистов, источники питания на основе высокообогащенного Ni-63 и с новым дизайном преобразователя создают прорывную платформу для проектирования устройств новых поколений в области кибернетики и искусственного интеллекта. Это новый тип приборов, который станет базой для новой архитектуры электронных устройств.
Источник: